Rational orthogonal approximations to orthogonal matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Geometry: Theory and Applications 7:25-35, 1997. Rational Orthogonal Approximations to Orthogonal Matrices

Several algorithms are presented for approximating an orthogonal rotation matrix M in three dimensions by an orthogonal matrix with rational entries. The rst algorithm generates an approximation M2(M;) with accuracy and 2b+2-bit numerators and a common 2b+2-bit denominator (bit-size 2b+2), where b = d?lg e (2 ?b). The second algorithm uses basis reduction to generate an approximation M (M;) wit...

متن کامل

Orthogonal Rational Functions and Structured Matrices

The space of all proper rational functions with prescribed poles is considered. Given a set of points zi in the complex plane and the weights wi, we define the discrete inner product

متن کامل

Semidefinite approximations for quadratic programs over orthogonal matrices

Finding global optimum of a non-convex quadratic function is in general a very difficult task even when the feasible set is a polyhedron. We show that when the feasible set of a quadratic problem consists of orthogonal matrices from Rn×k, then we can transform it into a semidefinite program in matrices of order kn which has the same optimal value. This opens new possibilities to get good lower ...

متن کامل

Algorithm for generating orthogonal matrices with rational elements

Special orthogonal n × n matrices with rational elements form the group SO(n, Q), where Q is the field of rational numbers. A theorem describing the structure of an arbitrary matrix from this group is proved. This theorem yields an algorithm for generating such matrices by means of random number routines.

متن کامل

Orthogonal Rational Functions with real coefficients and semiseparable matrices

When one wants to use Orthogonal Rational Functions (ORFs) in system identification or control theory, it is important to be able to avoid complex calculations. In this paper we study ORFs whose numerator and denominator polynomial have real coefficients. These ORFs with real coefficients (RORFs) appear when the poles and the interpolation points appear in complex conjugate pairs, which is a na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Geometry

سال: 1997

ISSN: 0925-7721

DOI: 10.1016/0925-7721(95)00048-8